End-to-End Modeling of AFTA Coronagraphs (Lyot configuration)

John Krist JPL 24 October 2013

Model Evaluation Procedure

- Create PROPER model based on Zemax layouts provided by Mike Rud
 - HLC, VVC, & shaped pupil share same layout
- Verify that the PROPER model results match the performance expected by the advocate for an unaberrated system (no WFC)
- Run end-to-end models with WFC in an aberrated system over a specified bandpass to generate a dark hole
 - Static system, no jitter
 - No mask errors
- Starting at dark hole solution and without any further WFC, propagate individual Zernike aberrations through the system at various levels to gauge the coronagraph low order wavefront error sensitivities
 - Fields are sent to Luis Marchen and Stuart Shaklan for evaluation
- Evaluate solution for 1.6 mas pointing jitter
- Send dark hole field to Wes Traub for science metrics evaluation
 - Include field transmission pattern, planet PSF properties
 - Need a low-order-aberration-perturbed field for PSF subtraction error estimate?
 - Wes to evaluate 1.6 mas jitter field?

NOTE: The results shown here utilize non-final designs for demonstration only. Revised designs have been submitted but have not yet been evaluated.

Shaped Pupils

- Three shaped pupils delivered 14 Oct 2013
- A.J. Riggs specified one for primary analysis
 - SP_AFTA_hN512_erNo_c8_37WA24_60deg_tr22pt7pct.fits
- Layout uses field stop at intermediate focus after shaped pupil mask
- Two runs of EFC to generate 2-sided, full-size and 1sided, small-size dark holes
 - 522 578 nm
 - 5 wavelengths "sensed" and controlled

Shaped Pupil (522-578 nm)

SP_AFTA_hN512_erNo_c8_37WA24_60deg_tr22pt7pct.fits

Mask transmission = 22% relative to obscured AFTA pupil

No aberrations

Mean contrast = 1.3×10^{-8}

2 Sided, Full Size Dark Hole

Post-EFC

Opening angle = 56° | X | \geq 4 λ /D, R \leq 22.5 λ /D

Mean contrast (full field) = 6.2×10^{-9} $4 - 5 \text{ }\lambda/\text{D} = 1.5 \times 10^{-8}$

1 Sided, Small Size Dark Hole

Post-EFC

Mean contrast (full field) = 1.5×10^{-9} $4-5 \text{ }\lambda/D = 5.3 \times 10^{-9}$

Shaped Pupil Jitter Response

Post-EFC aberrated fields

14 mas RMS body jitter – 0 jitter

1.6 mas RMS FSM jitter – 0 jitter

Jitter perfectly removed at FSM

HLC Jitter Response

Post-EFC aberrated fields

No Jitter (2.2e-9)

1.6 mas jitter

Circles are r = 4 and $13 \lambda/D$

This document may contain ITAR controlled information. Release to foreign nationals may require export authorization.

HLC Small, 1-Sided Dark Hole

Circles are r = 4 and $8 \lambda/D$

Modeling Status

- HLC
 - Simple to represent, preliminary versions have already been fully modeled
- Shaped pupil
 - Preliminary versions fully modeled, sensitivities delivered (hybrid pupil + DM version verified but not end-to-end modeled)
- VVC + shaped pupil + ACAD
 - ACAD propagation verified (remapped pupils as expected)
 - spot or no spot on vortex mask?
- PIAACMC
 - Early monochromatic result verified
 - Small focal plane mask requires separate modeling stage to represent at high resolution, requires more time
 - Need to evaluate remapping via interpolation (fast) vs explicit propagation (slow)